Nath for A

Syllabus

Linear algebra

Calculus + optimization methods

Probability theory + statistics

Linear Algebra

Vectors and linear combinations

Lengths and dot products

Matrices, definition, matrix operations

Linear equations and Gaussian elimination

Gaussian elimination

Elimination using matrices

Inverse matrices, 2 conditions for existence, Gauss-Jordan elimination, Determinant

Matrix operations and decomposition

LU decomposition; Transposes, symmetric, permutation matrices

Vector spaces, subspaces

The nullspace of A:

The complete solution to Ax = b

05 Independence, basis and dimension, orthogonality

Linear independence, basis, dimension of vector spaces 2 Four fundamental subspaces (column, null, row, left null) and their dimensions

Orthogonal subspaces, orthogonal complements

1 Orthogonal bases, Gramm-Schmidt process

2 Projection of vectors, orthogonal projections

Least squares approximation, fitting linear models

Diagonalization, 2 conditions for diagonalization

Iterative estimates for eigenvalues /eigenvectors

Definitions and properties of linear transformations

Representation of linear 2 transformations as matrices

1

SVD, computation and applications

assessment covering all topics (final exam)

Presenting final projects that apply multiple linear algebra concepts

optimization methols

Introduction to Limits, definition, limit laws

Continuity, types of 2 discontinuities

Fundamentals of calculus for AI/ML

Limits at Infinity and **Infinite Limits**

Introduction to derivatives, definition, rules of differentiation

Applications of 2 derivatives, tangent lines, rates of change

Differential calculus and its applications

Second and higher-order derivatives, Taylor expansion

Introduction to integrals, definition, fundamental theorem of calculus

Integral calculus and its applications

Applications of integrals,

Techniques of integration (integration by parts, substitution)

Multivariable calculus for AI/ML

2 Gradient vectors, Hessian matrices, linear and quadratic approximations

Double integrals and applications

Gradient Descent Variants - stochastic, mini-batch

Gradient Descent with 2 Momentum, Adaptive Momentum (Adam); Newton's method

Optimization techniques in AI/ML (part1)

Optimization techniques in AI/ML (part2)

Optimization techniques in AI/ML (part3)

Advanced AI/ML applications

Integrating techniques in AI/ML, combining calculus and optimization

Review and preparation for the final project

Probability theory + statistics

Introduction to probability theory 01

2

Fundamentals of probability

Basics of probability, event spaces

Conditional probability, independence, law of total probability, chain rule (product rule)

Discrete random variables, probability mass function (PMF)

Random variables (cont'd)

Continuous random variables, probability density function (PDF)

common distributions (Bernoulli, beta, binomial, exponential, gamma, normal, Poisson)

Probability 3 distributions (cont'd)

bivariate, marginal/conditional distributions, independent random variables

O3 Expectation, variance, and moments

Definition and properties of expectation and variance

Higher-order moments, moment generating functions

Covariance, correlation, and their properties

Bayes theorem

Bayes theorem, applications, and examples

Bayesian inference

Bayesian inference, prior and

Intro to bayesian networks

Hypothesis testing and confidence 05 intervals

Null and alternative hypotheses, types of errors

confidence intervals

Point estimation

Methods of point estimation, properties of estimators

Statistical inference and estimation

Interval estimation

Constructing and interpreting

• Principles of MLE, applications

Markov chain and sampling methods

Standard distributions

Importance sampling, MCMC, Gibbs sampling

