Al Engineering

Syllabus

Software engineering

Machine Learning

Deep Learning and common applications

Software engineering

Python basics and data structures 01

Introduction, control structures, functions

- Introduction to Python and its applications
- Python syntax and indentation
- Variables and data types
- Control structures: if-else statements, loops (for, while)
- Functions: defining functions, arguments, return values

- Lists: creation, indexing, slicing, methods (append, remove, etc.)
- Tuples: creation, indexing, immutability
- Dictionaries: key-value pairs, methods (get, keys, values, etc.)
- Sets: creation, methods (add, remove, union, intersection, etc.)

dictionaries, sets

List comprehensions, generators, decorators

- List comprehensions: syntax and use cases
- Generators: yield keyword, creating and using generators
- Decorators: function decorators, applying multiple decorators

Python advanced features 02

File I/O: reading from and writing to files

Exception handling: try, except, finally blocks, raising exceptions

Modules and packages,

- Modules: creating and importing
- Packages: structuring code with
- Standard library: overview of commonly used modules (os, sys,

Working with APIs, web scraping

- Working with APIs: making HTTP requests, handling responses
- Web scraping: BeautifulSoup, requests library

Python object-oriented programming 03 (OOP)

Advanced OOP concepts

- Advanced OOP concepts: class methods,
- Designing with inheritance and composition

Concurrency (threading and multiprocessing)

3

- Introduction to concurrency: threading and multiprocessing
- The threading module: creating and managing threads
- The multiprocessing module: creating and managing processes

Python concurrency mechanisms (Asynchronous programming)

Introduction to asynchronous programming: asyncio module

Defining and running asynchronous tasks

Using async and await keywords

- Advanced concurrency techniques: futures, coroutines
- Handling exceptions in asynchronous code
- Using concurrent.futures for parallelism

04

Advanced asynchronous

Integration and deployment

- Integrating Python applications with databases
- Deployment strategies: packaging and distributing Python applications
- Using Docker for containerization

Code quality, testing, debugging 05

Principles of clean code: readability, maintainability, simplicity

Code reviews: best practices, conducting effective reviews

Unit testing (writing test

Unit testing: importance, frameworks

Test-Driven Development (TDD):

Debugging techniques 3 and tools

- Debugging: strategies and techniques
- Tools: using IDEs, debuggers, logging

Machine Learning

Intro and supervised learning basics 01

Introduction to ML

What it is and why it is needed,

- compare traditional "Al" against traditional software
- Paradigms of ML

Supervised learning

KNN, for classification and

Model validation and evaluation

Data splitting, bias-variance tradeoff, validation/evaluation, metrics

02

Simplest models and what the "learning" process looks like

Supervised learning for classification

- Logistic regression vs Naive Bayes
- Transforming text into numbers

Data cleaning

Data cleaning, handling missing values, encoding categorical values 2

Practical issues in data preparation

Techniques and real examples

Min/max, max/abs, transformations (z-score, log and etc)

Practical issues (cont'd) and other model families

What to do at different steps: data preparation, training and metrics

Supervised learning wrap-up

Density estimation, histograms, KDE

Clustering, Kmeans, hierarchical

Unsupervised learning (cont'd) and intro to 06 RL

Reinforcement learning basics

O7 Review and practical exercises

Review and practical exercises on machine learning algorithms

Review of key concepts and algorithms learned so far

Practical session (applying supervised learning models)

Practical session (applying unsupervised learning models)

Deep Learning and common applications

Introduction to neural networks 01

Issue of feature engineering

General info about most common architectures (Perceptron-MLP, CNN, RNN, Transformers)

2

MLE framework, forward propagation, loss construction, univariate regression, binary/ multiclass classification, multitask

learning

Basic MLP under the lens

Learning with backpropogation

3

- Derivation of update formulas
- Cases for MSE and binary CE

What makes NN non-linear

• Commonly used functions

Initialization and 2 optimization

CNNs and intro to transfer learning 03

- Object detection, segmentation
- YOLO, Faster-RCNN, U-Net, Mask R-CNN

- Word, subword embeddings and how to learn them
- Word2vec training, negative sampling

04

- Vanilla RNN
- Vanishing / exploding gradients
- LSTM, GRU, BILSTM

Sequence classification, sequence labeling tasks

Sequence generation Improved seq2seq 3 MLP vs RNN approach for language Introducing attention block for seq2seq Seq2seq: Machine translation

BERT, pretraining/

Sequence pair classification

Decoder-only setup, aka 3 GPT

- Pretraining / finetuning
- GPT family, scaling
- Birth of new paradigm: in-context learning

Transformers for vision, multi-modal 07 learning, practical problems

Transformers in computer vision

Vision transformers, masked autoencoders

Multi-modal learning

Distillation and quantization

Multi-modal learning

Review and final project

